skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Sowan, Nancy"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. null (Ed.)
    Due to a mismatch in mechanical moduli, the interface between constituent materials in a composite is the primary locus for crack nucleation due to stress concentration. Relaxation of interfacial stresses, without modifying the properties of constituent materials, is a potent means of improving composite performance with broad appeal. Herein, we develop a new type of adaptive interface that utilizes thiol–thioester exchange (TTE) at the filler–polymer interface. Specifically, dynamic covalent bonds sequestered at material interfaces are reversibly exchanged in the presence of thioester moieties, excess thiol and a base/nucleophile catalyst. Employing this active interface effectively mitigates deleterious growth of interfacial stresses, thereby enhancing the composite's mechanical performance in terms of reductions in polymerization shrinkage stress and improvement in toughness. Activating interfacial TTE in an otherwise static matrix resulted in 45% reduction in the polymerization stress, more significant post-polymerization stress relaxation and drastically increased toughness relative to control composites incapable of TTE bond exchange but otherwise identical. In particular, the higher fracture toughness in TTE-activated composites is attributed to the alleviation of crack tip strain concentration, as revealed by digital image correlation. 
    more » « less